Indice dei contenuti
Abstract
Ritengo che chiedersi quale possa essere il meccanismo che permette al Sole di brillare sia una domanda spontanea e quasi inevitabile. Ai nostri giorni, pur con le indispensabili semplificazioni, anche chi frequenta la scuola primaria ha modo di conoscere la risposta scientificamente corretta. Ma non è sempre stato così. Che all’origine di questa energia vi fosse una sequenza di reazioni nucleari che, coinvolgendo atomi di idrogeno, producono atomi di elio è parte del nostro sapere scientifico solamente dal 1939. Proviamo dunque a ripercorrere a grandi linee le risposte che, nel corso del tortuoso cammino che spesso caratterizza la scienza, sono state proposte.Il Sole che produce tutta l’energia necessaria
Facile comprendere come il Sole occupi da sempre un posto particolare nella società umana. Fin dall’antichità non solo gli viene riconosciuto un ruolo chiave nel garantire una situazione climatica favorevole alla vita, ma le periodicità del suo cammino in cielo (alternanza giorno/notte e ciclo stagionale) si rivelano anche un ottimo strumento per tener traccia dello scorrere del tempo. Inevitabile che – sia per la potenza che mostra di avere, sia per la sua costante presenza fin dalla notte dei tempi – nelle civiltà del passato venga identificato con una divinità e adorato come tale. Poco importa definire quali siano la vera natura e l’origine dello splendore e del calore del Sole. L’idea di Aristotele (384 – 322 a.C.) che le leggi della natura valide sulla Terra non siano necessariamente vincolanti per gli oggetti celesti taglia la testa al toro: a differenza dei fuochi terrestri, quel mondo ardente può bruciare per quanto tempo vuole senza creare nessun problema. Per Aristotele la Terra è costituita da materiali che decadono e la luce che qui viene prodotta non può durare a lungo: le fiamme sussultano e cambiano continuamente di forma, il combustibile si esaurisce e la luce si spegne. Sul Sole, però, le cose funzionano in modo differente e quel fuoco che lo alimenta si comporta in modo differente dai roghi a noi famigliari. Nel 1833, anno in cui l’astronomo britannico John Herschel (1792 – 1871) pubblica il suo Trattato sull’Astronomia, affrontando brevemente la questione della fonte dell’energia solare non può che ammettere che si è di fronte a un grande mistero e che gli astronomi sono in grandissima difficoltà. «Se si potessero azzardare congetture per l’origine della radiazione solare – scrive Herschel – dovremmo guardare piuttosto alla nota possibilità di una generazione indefinita di calore per attrito, oppure alla sua eccitazione per scarica elettrica, piuttosto che a qualsiasi combustione di combustibile ponderabile, sia solido che gassoso». La grandissima difficoltà proviene soprattutto dal fatto che chiedersi come il Sole produca la sua energia è strettamente collegato alla domanda relativa alla sua età: due facce di una medesima medaglia. Infatti, se riusciamo a determinare quanta energia produce il Sole, possiamo verificare se le fonti di energia proposte sono in grado di sostenere tale produzione per tutto il tempo dell’esistenza del Sistema Solare. A proposito di quest’ultimo valore, nel 1650 il vescovo irlandese James Ussher (1581 – 1656) nel suo Annales Veteris Testamenti aveva suggerito, basandosi sui suoi conteggi della cronologia biblica, che la nascita della Terra e dell’intero cosmo fosse avvenuta intorno al 4000 a.C. Con neppure 6000 anni di vita alle spalle, trovare per il Sole una fonte di energia adeguata non sembrava poi così impegnativo. È pur vero che, poco più di un secolo dopo la stima di Ussher, James Hutton (1726 – 1797) pubblica quello che viene considerato il primo trattato di geologia moderna in cui non solo si afferma che la Terra è di gran lunga più antica, ma anche che i processi geologici attuali sono gli stessi che si sono verificati nel passato. Dalle considerazioni geologiche emerge con sempre maggiore evidenza che la Terra deve avere almeno qualche centinaio di milioni di anni. Quando poi, nel 1838, il fisico francese Claude Servais Pouillet (1790 – 1868) determina per la prima volta il valore della costante solare (praticamente, quanta energia arriva sulla Terra dal Sole), appare subito piuttosto evidente che, invocando anche il più efficiente tra i meccanismi di combustione chimica, si giungerebbe comunque a valori dell’età del Sole assolutamente incompatibili con le datazioni geologiche. Se si voleva risolvere il problema della produzione di energia del Sole, insomma, era necessario abbandonare la chimica e guardare altrove.Energia Meteoritica
La prima teoria meccanica del calore solare, pubblicata nel 1841 dal tedesco Julius Robert von Mayer (1814 – 1878), chiama in causa una continua cattura da parte del Sole di asteroidi dallo spazio circostante. Mayer ritiene che gli asteroidi che colpiscono il Sole ad alta velocità siano in grado di generare da 4.600 a 9.200 volte più calore di quanto ne genera la combustione di un’uguale massa di carbone. Più che una caduta diretta, suggerisce un graduale movimento su spirali sempre più strette dovuto alla resistenza dell’etere che, stando alle idee del tempo, riempiva lo spazio. Secondo i suoi calcoli, ogni minuto cadrebbe sul Sole una massa intorno ai 2×1014 kg, vale a dire una massa terrestre ogni 56.800 anni. La valutazione, però, mette in luce un problema piuttosto spinoso: Mayer si rende conto, infatti, che un simile aumento della massa del Sole comporterebbe un accorciamento dell’anno siderale dell’ordine di mezzo secondo, un effetto in disaccordo con le osservazioni. La teoria meteoritica del calore solare viene suggerita una decina d’anni più tardi anche dal fisico scozzese John James Waterston (1811 – 1883). Ignaro del lavoro di Mayer, tradotto in inglese solo nel 1863, Waterston sostiene che il calore del Sole ha la sua origine dall’afflusso di un gran numero di oggetti che, provenendo principalmente dall’esterno del Sistema Solare, colpiscono il Sole perpendicolarmente alla sua superficie. Le sue stime indicano che, imputando il calore del Sole interamente a tali cadute, il raggio solare aumenterebbe di circa cinque metri all’anno. Mentre Mayer era seriamente preoccupato dal problema dell’aumento di massa del Sole per le sue conseguenze astronomiche, Waterston lo ignorava o, probabilmente, non ne era consapevole. L’idea, in modo indipendente, viene proposta nel 1854 anche da William Thomson (1824 – 1907): i calcoli del futuro Lord Kelvin, però, lo portano a ipotizzare una pioggia meteoritica decisamente più intensa, suggerendo che si deve mettere in conto la caduta di 100 masse terrestri ogni 4.750 anni. Una quantità di materia davvero importante, ma – secondo le sue parole – «non più di quanto è perfettamente possibile che cada sul Sole». Per quanto riguarda la provenienza, Thomson nega esplicitamente l’ipotesi basata su oggetti provenienti dal Sistema Solare esterno, ma sostiene che i meteoroidi percorrono orbite interne all’orbita della Terra. I calcoli di Lord Kelvin, convinto assertore che lo stesso meccanismo meteoritico fosse responsabile anche della rotazione del Sole attorno al proprio asse, lo portano a concludere che è improbabile che il Sole riesca a mantenere l’attività attuale per molto più di 300.000 anni nel futuro. Si tratta del primo tentativo di calcolare la durata della vita del Sole sulla base di una teoria fisica. L’ARTICOLO COMPLETO è riservato agli abbonati alla versione digitale. Per sottoscrivere l’abbonamento Clicca qui. Se sei già abbonato accedi al tuo account dall’Area RiservataQuesto contenuto non è accessibile al tuo livello di iscrizione.