In attesa della probabile esplosione di T Coronae Borealis
continuiamo gli approfondimenti sulla tipologia di oggetto che potremo osservare e le tecniche investigative messe in atto anche dalla ricerca.

Introduzione

Da più di mezzo secolo l’astronomia osservativa si serve dei risultati ottenuti con metodi di spettroscopia nucleare, inviati da telescopi alloggiati in satelliti o dalla stazione spaziale internazionale. La radiazione cosmica o quella proveniente da corpi celesti viene studiata attraverso metodologie di analisi caratteristiche della fisica nucleare la quali consentono di monitorare lo stato attuale dell’universo, vicino o profondo, migliorarne le informazioni già in possesso, esplorare il passato e l’evoluzione futura dello spazio.
In questo campo una sfida di nicchia estremamente curiosa coinvolge alcuni centri di ricerca, principalmente europei, ed è relativa alle novæ. Queste infatti vengono studiate attraverso l’analisi di spettri di emissione gamma di prodotti di reazioni nucleari e permettono di caratterizzare singole novæ e di confermare le teorie che ne spiegano la natura.



Con il termine nova si intende l’insieme dei fenomeni di fusione nucleare e di conseguenti emissioni di energia da parte di una nana bianca di un sistema binario.

Scoperte alla fine del XVIII secolo, le nane, dette bianche per il loro spettro [1], sono state osservate nel corso dell’‘800 [2, 3] e poi studiate sistematicamente. Sulla base delle considerazioni relative alle prime tre osservate, Sirio A, Sirio B e il Cucciolo, si poté presto affermare che queste stelle possiedono un’elevata temperatura superficiale attorno ai 9000 K [4], una massa ridotta e un’elevata densità. Una volta appurata l’esistenza delle nane bianche, Sir Arthur Stanley Eddington, astrofisico inglese vissuto a cavallo tra ‘800 e ‘900, concepì per primo un’ipotesi relativa alla loro struttura. Eddington immaginò che, data la loro massa elevata e la loro dimensione modesta, le nane dovessero essere costituite da materia fortemente addensata, ossia non da atomi o molecole, ma da uno stato di plasma, dove protoni e neutroni potevano addensarsi e muoversi liberamente [5]. Fu da subito evidente che le pressioni a cui le cariche sono sottoposte possono confinare masse relativamente ridotte, cosa che determinò una corsa alla valutazione della massa limite per una nana bianca. Successivamente ai lavori di Anderson e Stoner della fine degli anni ’20, fu il fisico indiano Subrahmanyan Chandrasekhar a formalizzare l’idea di un valore limite per la massa di una nana bianca non rotante, fissato in 1,44 masse solari e detto limite di Chandrasekhar.

Lo stato di nana bianca è spesso quello finale di una stella. Il destino di una stella dipende infatti dal valore della sua massa m e dà questi esiti:

– nane bianche piccole (per stelle di massa m, m<0,5 M 1): dette nane all’elio, sono lo stato finale di stelle di massa m<0,5 M in cui i processi di fusione degli elementi successivi all’elio sono resi impossibili dalla temperatura che raggiunge la stella al termine della sintesi dell’elio;
– nane bianche medie (per stelle di massa m, 0,5M <m<8 M ): tra le più diffuse, sono lo stato finale di stelle di massa intermedia; sono dette nane al carbonio-ossigeno e la massa della stella è sufficientemente elevata per proseguire la sintesi degli elementi leggeri, fino all’ossigeno2;
– oltre le nane medie (per stelle di massa m, m>8 M ): per queste stelle non è prevista un’evoluzione in nana bianca e la loro massa è sufficientemente elevata per permettere reazioni di fusione nucleare che consentono la formazione di elementi pesanti fino al ferro. Queste stelle terminano il loro corso in una supernova che darà vita principalmente a una stella di neutroni o a un buco nero.
Le supernove, che esplodono per fusioni che avvengono all’interno della stella, non vanno però confuse con le novæ.

Il contributo della fisica nucleare allo studio delle novæ in anni recentissimi ha suscitato interesse e dato vita a aspettative che potranno essere confermate solo nei prossimi anni.

l’ARTICOLO COMPLETO è riservato agli abbonati. Per sottoscrivere l’abbonamento Clicca qui. Se sei già abbonato accedi al tuo account dall’Area Riservata

Questo contenuto non è accessibile al tuo livello di iscrizione.

L’articolo è pubblicato in COELUM 271 VERSIONE CARTACEA