È un po’ che non ne parliamo, ma Juno la missione della NASA che dal 2016 orbita attorno a Giove avvicinandosi periodicamente alla parte alta della sua atmosfera, continua a raccogliere dati per gli scienziati e a fornire materiale per le straordinarie immagini elaborate dalla Juncam community. L’ultimo flyby è avvenuto il 17 febbraio, mentre il prossimo sarà per il 10 aprile e, recentemente, sulla rivista Nature Astronomy sono apparsi i primi risultati scientifici sulla quantità d’acqua presente nell’atmosfera di Giove.
I dati raccolti da Juno, infatti, danno una stima della quantità d’acqua contenuta nelle nubi gioviane, che all’equatore raggiungerebbero lo 0,25% delle molecole presenti nell’atmosfera, quasi tre volte quella del Sole… un dato che ha sorpreso i ricercatori, ma vediamo tutti i passaggi.
Durante la missione Galileo, nel 1995, i dati raccolti dalla sonda suggerivano che Giove dovesse essere estremamente più “arido” del Sole. Si parla ovviamente non di un confronto sulla quantità di acqua liquida, nessuno dei due astri può chiaramente ospitarne, ma sulla presenza dei suoi componenti, ossigeno e idrogeno.
Per decenni gli scienziati hanno atteso una stima accurata di queste quantità, visto che Giove fu probabilmente il primo pianeta a formarsi, e contiene la maggiorparte dei gas e della polvere che non sono andati a formare il Sole. Le principali teorie sulla sua formazione si basano sulla quantità di acqua assorbita dal pianeta, ecco quindi che averne una stima serve non solo a comprendere meglio la formazione del gigante gassoso, ma anche a completare una parte importante del puzzle di come il nostro Sistema Solare si sia formato. L’abbondanza d’acqua ha anche importanti implicazioni per la meteorologia del gigante gassoso e per conoscerne la sua struttura interna.
La presenza di acqua era stata suggerita dai fulmini – un fenomeno tipicamente alimentato dall’umidità – rilevati su Giove dalle Voyager e da altre sonde, ma nessuna di queste aveva mai tentato una stima accurata della quantità di acqua in profondità nell’atmosfera del pianeta.
Lo fece, come abbiamo accennato, la sonda Galileo che – prima che interrompesse le tramissioni durante la sua discesa nell’atmosfera gioviana in cui si è tuffata nel dicembre 1995 – era riuscita a misurare con il suo spettrometro la quantità di acqua fino a una profondità di circa 120 km, dove la pressione atmosferica raggiungeva i 22 bar, trovando una quantità d’acqua dieci volte inferiore a quella prevista!
Ancora più sorprendente: la quantità di acqua misurata sembrava essere in aumento alla massima profondità misurata, molto al di sotto di dove le teorie suggerivano che l’atmosfera di Giove dovesse essere ben miscelata. In un’atmosfera ben miscelata, infatti, il contenuto di acqua è costante in tutta la regione e ha maggiori probabilità di rappresentare una media globale. Questi dati combinati con una mappa a infrarossi, ottenuta in contemporaneamente da un telescopio a terra, ha fatto pensare però che si sia trattato di “un caso” e che la sonda si fosse trovata a campionare un punto insolitamente secco e caldo.
Insomma… Giove non consente approssimazioni. «Proprio quando pensiamo di aver capito le cose, Giove ci ricorda quanto dobbiamo ancora imparare», ammette Scott Bolton, investigatore principale di Juno presso il Southwest Research Institute di San Antonio.
Vista l’esperienza della sonda Galileo, con Juno si sta cercando di misurare l’abbondanza d’acqua in vaste regioni in tutto il pianeta, utilizzando un radiometro a microonde (MWR) invece che gli infrarossi, che vengono “bloccati” dalle spesse nubi. Osservando Giove dall’alto con sei antenne che misurano contemporaneamente la temperatura atmosferica a più profondità, viene sfruttata la proprietà dell’acqua (ma anche dell’ammoniaca, che viene misurata allo stesso modo) di assorbire determinate lunghezze d’onda della radiazione a microonde (lo stesso principio sfruttato dai forni a microonde per scaldare i cibi).
In questo modo Juno è riuscita a raggiungere profondità molto maggiori rispetto alla Galileo, arrivando a quasi 150 chilometri, dove la pressione raggiunge i 33 bar. Nei primi otto flyby i ricercatori si sono concentrati sulle regioni equatoriali, dove sembra che l’atmosfera sia meglio miscelata che altrove.
Ed è così che «abbiamo trovato che l’acqua all’equatore era molta di più di quanto misurato dalla sonda Galileo», spiega Cheng Li, del team scientifico della missione. «Ma poiché la regione equatoriale è molto particolare su Giove, si dovrà confrontare questo risultato con l’abbondanza d’acqua di altre regioni».
L’orbita di 53 giorni di Juno si sta lentamente spostando verso nord, come previsto, esponendo quindi maggiormente l’emisfero nord alle misurazioni degli strumenti a bordo della sonda, oltre che al fuoco della JunoCam.
Gli scienziati sono quindi ora impazienti di vedere i nuovi dati per capire in che modo l’abbondanza d’acqua varia in base alla latitudine e quale può essere l’apporto, da questo punto di vista, dei numerosi cicloni che si formano al polo nord.
Noi attendiamo quindi nuovi risultati e ci godiamo le magnifiche imamgini che arrivano senza sosta dalla JunoCam community!
Le immagini grezze messe a disposizione degli appassionati della JunoCam Community si possono vedere al link https://missionjuno.swri.edu/junocam/processing
Indice dei contenuti
Leggi anche
Speciale Juno. Alla scoperta dei segreti di Giove
Un Giove tutto nuovo: i primi risultati scientifici di Juno
Profondo Rosso. Viaggio nella Grande Macchia Rossa di Giove e ultime scoperte
Un viaggio alla scoperta dei segreti del SOLE
50 anni di fisica solare e il nuovo Solar Orbiter europeo
Coelum Astronomia di Febbraio 2020
è online, come sempre in formato digitale, pdf e gratuito.
Lascia la tua mail o clicca sulla X e leggi!
L'”abbonamento” è gratuito e serve solo per informare delle prossime uscite della rivista.