La ricerca sulle onde gravitazionali continua a rivelare nuovi orizzonti nell’astronomia moderna. Uno dei protagonisti di questa rivoluzione è il MeerKAT Pulsar Timing Array (MPTA), un progetto che sfrutta le straordinarie capacità del radiotelescopio MeerKAT per esplorare fenomeni cosmici a frequenze nanohertz. Questo approccio unico offre una finestra su eventi che si svolgono su scale temporali e spaziali vastissime, come la fusione di buchi neri supermassicci.

La sfida di osservare l’universo con i pulsar

I pulsar millisecondari sono al centro di questo straordinario esperimento. Questi oggetti, che emettono impulsi radio con regolarità estrema, funzionano come orologi cosmici incredibilmente precisi. Misurando con accuratezza i tempi di arrivo di questi impulsi sulla Terra, gli scienziati possono individuare lievi variazioni attribuibili alla distorsione dello spazio-tempo causata dalle onde gravitazionali.

Il MPTA ha registrato osservazioni di 83 pulsar in un periodo di 4,5 anni, accumulando un’enorme quantità di dati ad alta precisione. Con un errore mediano di soli 3,1 microsecondi, questi dati rappresentano uno dei dataset più completi e dettagliati mai raccolti in questo campo. Secondo il team, questa precisione consente di esplorare il fondo stocastico di onde gravitazionali, una sorta di “rumore cosmico” generato dall’incoerente sovrapposizione di onde gravitazionali provenienti da sorgenti come binarie di buchi neri supermassicci e fenomeni esotici dell’universo primordiale.

Prime evidenze di un fondo gravitazionale

Le osservazioni del MPTA hanno fornito indizi incoraggianti sulla presenza di un fondo gravitazionale a frequenze nanohertz. Questo segnale si manifesta come una correlazione temporale nei residui di tempo misurati tra i pulsar. Tali correlazioni, modellate attraverso la funzione Hellings-Downs, indicano che il segnale potrebbe effettivamente derivare da onde gravitazionali e non da processi casuali o da rumori strumentali.

Uno degli aspetti più affascinanti di questa ricerca è la rilevazione di un potenziale “hotspot” anisotropico nella mappa delle onde gravitazionali a 7 nHz. Sebbene sia necessario approfondire per confermare la natura astrofisica di questo segnale, questa scoperta potrebbe suggerire che alcune sorgenti di onde gravitazionali siano distribuite in modo non uniforme nel cielo.

Il video mostra una rappresentazione artistica di coppie di buchi neri supermassicci e del tessuto spazio-temporale distorto dal loro impatto. Crediti: Carl Knox, OzGrav, Swinburne University of Technology

Collaborazione e confronto globale

I risultati del MPTA si inseriscono in un contesto internazionale di ricerca, in cui altre collaborazioni, come il North American Nanohertz Observatory for Gravitational Waves (NANOGrav) e l’European Pulsar Timing Array (EPTA), hanno riportato evidenze simili. La loro significatività statistica varia tra 3 e 4𝜎, ma un consenso definitivo sulla scoperta di un fondo gravitazionale richiede ulteriori verifiche.

La precisione unica di MeerKAT permette però al MPTA di emergere come un contributore fondamentale. I dati mostrano un’ampiezza del segnale gravitazionale leggermente superiore rispetto a quella registrata da altre collaborazioni, un risultato che potrebbe derivare dalla maggiore sensibilità del radiotelescopio MeerKAT e dalla qualità del suo set di dati.

Una finestra su fenomeni straordinari

La ricerca del MPTA non si limita a confermare l’esistenza di onde gravitazionali, ma punta anche a caratterizzarne la distribuzione e l’origine. Se confermata, l’anisotropia del segnale potrebbe fornire indizi fondamentali sull’evoluzione dei buchi neri supermassicci e sulla loro distribuzione nell’universo. Allo stesso modo, un fondo gravitazionale isotropo potrebbe supportare teorie legate ai fenomeni dell’universo primordiale, come la formazione di stringhe cosmiche o le transizioni di fase.

Il futuro della ricerca con MeerKAT

Con un dataset che continua a crescere, il futuro della ricerca del MPTA appare promettente. Nuove osservazioni e aggiornamenti tecnologici miglioreranno ulteriormente la sensibilità, permettendo di distinguere con maggiore precisione i segnali astrofisici dai rumori di fondo. Questo lavoro non solo aiuterà a confermare l’esistenza del fondo gravitazionale, ma aprirà anche la strada a una nuova comprensione dei processi che hanno plasmato il nostro universo.

Mentre gli scienziati continuano a esplorare le onde gravitazionali con il MPTA, una cosa è certa: siamo testimoni di una nuova era dell’astronomia, in cui la comprensione dell’universo si espande ben oltre i limiti della luce visibile, raggiungendo le pieghe più sottili dello spazio-tempo stesso.

Le antenne che formano il radiotelescopio sudafricano MeerKAT. Crediti: Enrico Sacchetti / Inaf

Il MeerKAT Pulsar Timing Array è un esperimento internazionale che utilizza il sensibilissimo radiotelescopio MeerKAT (gestito dal South African Radio Astronomy Observatory) proprio per osservare, circa ogni due settimane, decine e decine di pulsar e misurare il tempo di arrivo degli impulsi radio con una precisione che può raggiungere le decine di nanosecondi. “Grazie a queste caratteristiche, MPTA costituisce il più potente rivelatore di onde gravitazionali di frequenza ultra bassa nell’intero emisfero australe”, sottolinea Federico Abbate, ricercatore dell’INAF di Cagliari e tra gli autori di tutti e tre gli articoli pubblicati oggi. 

A 18 mesi di distanza dalla prima serie di pubblicazioni da parte di altri tre esperimenti internazionali (tra cui l’European Pulsar Timing Array, EPTA, in cui sono è coinvolto INAF, l’Università di Milano Bicocca e il Gran Sasso Science Institute), i risultati pubblicati oggi offrono nuove prospettive per la comprensione dei buchi neri più massicci dell’Universo, sul loro ruolo nella formazione del cosmo e sull’architettura cosmica che hanno lasciato dietro di sé. 

Caterina Tiburzi, ricercatrice dell’INAF di Cagliari coinvolta nella collaborazione EPTA, spiega: “Comprendere e modellare il rumore di fondo che affligge il segnale delle pulsar, causato dagli effetti del gas ionizzato interposto tra le stelle, la Terra e il Sole, è l’elemento chiave per confermare definitivamente i risultati di MPTA, così come quelli di EPTA e degli altri esperimenti precedenti. I nuovi ricevitori a bassa frequenza di MeerKAT saranno strumenti straordinari per questo scopo”. 

“Oltre all’entusiasmo per i nuovi esiti osservativi – conclude infine Andrea Possenti, dell’INAF Cagliari, e membro della collaborazione MPTA fin dalla sua fondazione nel 2018 – questo è un momento cruciale, che dimostra come la collaborazione internazionale negli esperimenti di tipo Pulsar Timing Array, nei quali INAF è coinvolto da oltre 20 anni, spalancherà infine le porte dell’astronomia delle onde gravitazionali di frequenza ultra bassa”. Interviste a cura di Media INAF.

Fonti: Oxford Accademy